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Abstract—Motor Imagery-based Brain-Computer Interfaces 
have been widely utilized in neuro-rehabilitation. Motor Imagery 
electroencephalogram (MI-EEG) refers to the EEG signals that 
people imagine their body moving without real action. People 
who have motor disorders can control the external devices 
through electroencephalogram (EEG)-decoding. However, there 
are still a variety of challenges in decoding due to the complexity 
and non-stationarity of EEG. How to improve the accuracy and 
robustness of EEG-decoding remains a key question to be studied. 
In this work, a self-attention-based convolutional neural network 
(CNN) combined with Frequency-Time Band Common Spatial 
Pattern (FTBCSP) is first introduced for the four-class MI-EEG 
classification. Self-attention-based CNN is employed on raw data 
to obtain the channel weights and intensify the spatial 
information. Common Spatial Pattern (CSP), an algorithm that is 
widely used in MI-EEG decoding, can extract discriminative 
features between two classes. Features after processing by the 
CSP algorithm are combined with the above spatial information 
to accomplish classifying. We validate this method on the 
publicly available multiclass MI datasets and yield a mean 
accuracy of 78.12% which performs better than other traditional 
methods. It proves that the proposed approach makes full use of 
the temporal and spatial information of EEG and acquires 
outstanding classification performance on public datasets. 

Keywords—Motor Imagery, Brain-Computer Interface, 
Electroencephalgram (EEG), attention, Frequency-Time Band 
Common Spatial Pattern (FTBCSP ) 
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I.  INTRODUCTION (HEADING 1) 
Brain-Computer Interface (BCI) is an important tool that 

allows people to communicate with or control external 
electronic devices. Moreover, motor imagery-based BCI (MI-
BCI) enables individuals with a motor disability to link with 
the outer environment and then improve their life quality. To 
realize these functions, researchers need to obtain the motor 
intention from subjects’ scalp electroencephalogram (EEG) and 
classify these intentions accurately.  

Pfurtscheller et al. [1] [2] discovered that the α and β 
frequency bands from different channel EEG would oscillate 
regularly when imaging hand moving. Then they defined this 
phenomenon as event-related desynchronization (ERD) and 
event-related synchronization (ERS). At present, this 
phenomenon has been broadly used in the analysis of Motor 
Imagery (MI) classification tasks and achieves excellent 
performance. Motor Imagery EEG (MI-EEG) refers to the EEG 
signals that people imagine their body moving without real 
action. 

Accordingly, the MI-EEG classification methods can be 
divided into two main categories, namely traditional machine 
learning methods, and deep learning methods. As a classic 
traditional machine learning method, Common Spatial Pattern 
(CSP) [3] [4] was proved to be effective in the field of MI. It is 
a feature extraction algorithm that can extract the spatial 
components from multi-channel EEG signals and acquire the 
most remarkable difference between discriminative classes. 
Then Sub-band Common Spatial Pattern (SBCSP) [5], as well 
as Filter Bank Common Spatial Pattern (FBCSP) [6], was 
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developed from CSP and overcame the frequency limitation of 
CSP. SBCSP utilized a filter bank to decompose the EEG 
signal into multiple sub-bands and achieved the classification 
results through sub-band scores. And, the FBCSP added feature 
selection procedure to yield the most discriminative features 
from these filter banks after filtering. The FBCSP helps 
improve the situation of manually selecting the frequency band 
appropriately in MI-EEG classification. 

Due to the advantage of realizing the end-to-end 
classification without manual participation, deep learning 
started to be widely used in MI-EEG classification. It helps to 
decrease some deviation of traditional methods depending on 
hand-crafted features and enhance the performance. For 
instance, Deep ConNet was used for end-to-end EEG decoding 
and EEG features visualization by Schirrmeister et al. [7]. 
Besides, EEG-Net [8] encapsulates several well-known EEG 
feature extraction procedures, such as the construction of 
optimal spatial filter and filter bank. Moreover, it achieves 
better classification performance in BCI than other deep 
learning methods and has excellent generalization performance. 

The attention model was first employed in the field of 
translation. With the development of attention, it becomes an 
essential part of the convolutional neural network (CNN) and is 
gradually used in the area of natural language processing, EEG 
decoding, and computer vision. Lately, some MI-classification 
studies adopted CNN combined with the attention model too. 
For example, Liu et al. [9] presented the spatial-temporal self-

attention CNN-based method to obtain accurate intention from 
the EEG. Ma et al. [10] proposed time-distributed attention 
combined with long short-term memory (LSTM) approach,  
and raw data was split into several time segments and then 
these segments were operated by class attention as well as band 
attention. Squeeze-and-excitation attention was also applied in 
MI classification [11]. These promising results achieved on 
attention-based approaches demonstrate the good prospects of 
attention mechanism in MI. 

The primary objective of this work is to improve the 
accuracy of four-class MI classification task (left hand, right 
hand, feet, and tongue). We combine the frequency-time band 
common spatial pattern (FTBCSP) feature with self-attention-
based CNN. The proposed model was tested on two public BCI 
datasets and compared with some classic methods. The 
remainder of this paper is organized as follows: Section II 
describes the datasets and Section III depicts the details of our 
presented methods. In Section IV, the results of comparison 
with other strategies in two BCI datasets are shown. The 
conclusions and future work are shown in Section V. 

II. MI-BCI DATABASE 
In this work, a publicly available dataset, namely BCI 

Competition IV IIa (BCI IV IIa), is adopted to evaluate the 
presented method. BCI IV IIa is sampled at 250 Hz and 
consisted of four MI tasks (left hand, right hand, feet, and 
tongue). Furthermore, the paradigm of this dataset is cue-based. 

 

Fig. 1. The framework of the proposed model. (A) Feature process is the process of FTBCSP feature that raw data was firstly divided into frequency and 
temporal bands then processed by the CSP algorithm. Among the process, T=4 represents the number of temporal bands, F=11 represents the number of frequency 
bands, and Ncsp=24 represents the number of features from each band. (B) Raw data process includes the self-attention model and the CNN model. Ch=22 is the 
number of EEG channels, t=1000 denotes the time points of 4s data, F=40 is the number of maps, and t2=976 as well as t3=61 is the result of the convolution 
operation. 
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TABLE I. DETAILS OF PARAMETERS IN RAW DATA PROCESS. 

details of Raw Data Process  
Layer Self-

attention Conv1 Conv2 BatchNorm ReLU AvgPooling ReLU Flatten 

Input (22, 1000, 
1) 

(22, 1000, 
1) (22,976,40) (1,976,40) (1,976,40) (1,976,40) (1,61,40) (1,61,40) 

Output (22, 1000, 
1) 

(22, 976, 
40) (1,976,40) (1,976,40) (1,976,40) (1,61,40) (1,61,40) (1,1,2440) 

Feature 
maps 1 40 40 40 40 40 40 2440 

Kernel - (1,25) (ch,1) - - (1,75) - - 
Stride - (1,1) (1,1) - - (1,15) - - 

 
BCI VI IIa dataset comprises EEG data from 9 subjects 

with 25 channels. Each subject has two sessions and each 
session has 288 trials (72 trials for each of the four classes). 
Each channel is bandpass-filtered between 0.5 Hz and 100Hz. 
In this study, we only consider the EEG data from the first 22 
channels because the last 3 channels contain Electrooculogram 
(EOG) signals. Besides, a Butterworth bandpass filter with 0.5 
Hz-32 Hz and a time window of 4s length is applied to extract 
3s-7s data from every trial. We separate the two sessions into a 
training set and a test set, both of them have the same amount 
of 288 trials. 

III. METHODS 

A. Overview 

As Fig. 1 shows, the whole structure of the model can be 
roughly divided into two parts. The first part is the process of 
raw data, which includes a self-attention-based CNN model. 
Self-attention model is used to yield the channel weight of the 
raw EEG data and then the data is sent into two convolutional 
layers for further processing. The first one is the temporal 
convolutional layer and the other is the spatial convolutional 
layer. Accordingly, a series of pooling and nonlinear activation 
operations follows the convolution. The feature maps after 
being processed by the self-attention-based CNN are flattened. 
The detailed parameters of the network, such as the kernel size 
and the size of the stride, are shown in Table I. The second part 
is the CSP feature extraction process. After dividing the raw 
data into frequency and temporal bands, the raw data was 
calculated by the CSP algorithm. The frequency-time band 
common spatial pattern (FTBCSP) feature works as another 
input of the whole net model. In the end, these two feature 
maps are concatenated together and classified into four classes. 

B. Self-Attention based CNN 

The characteristics of the EEG signals varies from person 
to person. For example, the activated regions of the brain or the 
channels that respond to MI are generally various between 
individuals. Therefore, it is essential to find accurate channels 
when classifying. We employ the self-attention model before 
CNN to obtain the EEG channel information on various 
subjects. 

As the raw data process part shown in Fig. 1, the input data 
sized 22×1125×1 (take the BCI IV IIa as an example) is 

firstly reshaped into two matrixes sized 22× (1125×1) and 
(1125×1) ×22 respectively. Among it, 22 represents the 
number of channels, 1000 refers to the time points of 4s data, 
and 1 denotes the number of maps. Then the two matrixes are 
multiplied and applied softmax function in order to acquire a 
channel weight matrix with a size of 22×22. After that, the 
map that the channel weight matrix multiplied with the raw 
data matrix is added to the raw data map. 

Subsequently, the feature map with a size of 22×1125×1 
is put into the convolutional neural network. The detailed CNN 
framework is illustrated in Fig. 2. The first convolutional layer 
(Conv1) with 40 filters of size (1,25) is leveraged to gain the 
temporal features. The second convolutional layer (Conv2) 
utilize 40 filters with a size of (22,1) to capture the spatial 
features. Then the batch normalization is used to accelerate 
training process. The non-linear activation function, ReLU, is 
applied to improve the ability that the model learns and 
simulates complex data. The average pooling layer of size 
(1,75) can complete downsampling and reduce the redundancy 
of data. 

C. Frequency-Time Band Common Spatial Pattern (FTBCSP) 

FTBCSP means that the raw data was divided into different 
frequency and temporal bands before being calculated by the 
CSP algorithm. For the feature process, the first step is to 
divide temporal bands and frequency bands. As depicted in Fig. 
2, the frequency band between 4-36 Hz is split into 11 
subbands by the Butterworth filter. The bandwidth of the first 
seven subbands is 8Hz with 50% overlapping. The length of 
the eighth to the tenth bands is 16 Hz and they are also 50% 
overlapped. The bandwidth of the last one is 32 Hz. One time 
segment is shown in Fig. 3.  Since only four seconds of the 
EEG data is employed and the sampling rate is 250 Hz, there 
are 1000 points in each trial. There are 3 temporal bands with a 
length of 500 points and 50% overlapping as well as a temporal 
band with a length of 1000 points. As a consequence, 44 
frequency-time bands (11 frequency bands ×  4 temporal 
bands) can be obtained from each trial after splitting. 

After splitting, spatial filtering using the One-Versus-One 
(OVO) CSP algorithm is applied in each band. It can extract 
the spatial components of multi-channel EEG signals by 
finding the optimal spatial projection of two kinds of tasks.  

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on February 03,2023 at 11:32:33 UTC from IEEE Xplore.  Restrictions apply. 



ICIIBMS 2022. Track 3. Bioinformatics, Bioengineering, Medical Imaging, Neuroscience, Nara, Japan, Nov.24-26, 2022 

198 
 

 

 
Fig. 2. Frequency band. There are 11 frequency bands in total. Seven 
subbands have the width of 8Hz overlapped with 50% and the length of three 
bands is 16Hz. The band width of the last frequency band is 32Hz (4-36Hz). 

 
Fig. 3. Time band. Three temporal bands with 500-time points and 50% 
overlapping and one temporal band with all 1000-time points. 

OVO CSP means that we only take two classes in one CSP 
task. Taking this strategy, six spatial filters will be obtained 
owing to combining every two different classes from four 
classes. 

The first step of CSP is to calculate the normalized 
covariance matrixes 𝑅1 and 𝑅2 from two classes respectively. 

Ri= X1,iX2,i
T

trace(X1,i, X2,i)
(1)

(𝑋1,𝑖 represents the i trial of the first class) 

Then the mixed space covariance matrix R is calculated as 
follows: 

Rc̅̅ ̅= 
1
k

∑ Rc,i

k

i=1

(2) 

(c = 1 or 2, represents different classes) 

R=
 R1+R2

2
(3) 

Next, whitening matrix  P= Uc
T

√λC
 (𝑈𝑐 is the eigen matrix of 

R and  𝜆𝐶  is the eigenvector of R) is then applied to get the 

spatial filter with the purpose of removing correlation and 
reducing redundancy.  

Sc=  PRcPT (4) 

In the end, the spatial filter is projected to the time series of 
the ith band for obtaining feature vector Z𝑖 . We employ the 
first two m as well as the last two m rows of the eigenvectors to 
acquire the optimal discriminating features as follows:  

𝑓𝑝
𝑖 =  log (

𝑣𝑎𝑟(𝑍𝑝
𝑖)

∑ 𝑣𝑎𝑟(𝑍𝑝
𝑖)2𝑚

𝑖=1

) (𝑝 = 1 … 2𝑚) (5) 

Here, the value of m is 1. Hence the number of features in 
each band is 24 (4 features multiply 6 spatial filters). As a 
result, the size of the feature input is 44×24×1 (the number of 
bands × the number of features from multiple filters × 1). 

IV. RESULTS 
To verify the performance of our approach, we evaluate our 

method by comparing it with different methods in dataset BCI 
IV IIa. Besides, all experiments employ the same training set 
and test set without any preprocessing. The classification 
accuracy is set as an evaluation metric as follows: 

Accuracy=
TP+TN

TP+FP+TN+FN
(6) 

(TP: true positive; TN: true negative; FP: false positive; 
FN: false negative) 

Table II lists the accuracy of different approaches for each 
subject in four-class MI EEG classification task of the BCI IV 
IIa dataset. The proposed method can achieve a mean accuracy 
of 78.12% which outperforms other classical methods. For 
most subjects, our proposed method obtains better accuracy 
than other traditional methods. For subjects A06 and A08, 
there is only a tiny gap in accuracy between our method and 
the optimal method. These results prove the superiority of the 
proposed model.    

In this study, we focus more on decoding the spatial 
information of MI-EEG. Self-attention model is used to acquire 
the channel weights and intensify spatial information in raw 
data. Before feature processing, FTBCSP is utilized as spatial 
filters to obtain significant spatial information between 
different classes. 

TABLE II. THE ACCURACY (%) COMPARISON ON BCI IV IIA DATASET 

Method A01 A02 A03 A04 A05 A06 A07 A08 A09 Mean 
EEGNet [8] 78.82 53.82 80.90 61.11 68.75 58.68 73.61 75.35 67.71 68.75 

ST-Attention CNN [9] 72.57 54.86 78.47 55.90 69.10 50.00 69.79 67.71 68.06 65.16 
Deep ConvNet [7] 48.96 44.79 52.78 43.40 46.53 35.07 54.86 44.79 42.36 45.95 

Shallow ConvNet [7] 62.85 44.79 78.47 54.17 53.82 44.44 56.60 68.06 64.93 58.66 
FBCSP [6] 78.13 49.65 76.74 60.42 57.29 45.14 81.60 76.74 65.28 65.66 

Multiscale time-
frequency method [12] 84.03 61.81 82.99 63.89 70.14 52.08 92.01 81.25 80.21 74.27 

Proposed Method 86.11 65.28 84.03 75.00 80.56 58.33 90.63 82.99 80.21 78.12 
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In Table II, Deep ConvNet [7] shows the worst accuracy. 
Instead, the Shallow ConvNet [7] performs better than Deep 
ConvNet. The reason for the above situation may be that Deep 
ConvNet has higher complexity than the Shallow one. 
Compared with the common deep learning method, EEGNet 
[8], the mean accuracy in our approach is nearly 10% higher on 
datasets IV IIa. The comparison result indicates the 
effectiveness of our strategy in capturing spatial information. 
Furthermore, the reason why our model performs better than 
the traditional method FBCSP focused on spatial information is 
that the presented method can also take advantage of the 
temporal information. Due to the utilization of the self-
attention CNN model, the proposed method shows better 
performance than the multiscale time-frequency method [12], 
which also employs the CSP algorithm on the frequency and 
temporal bands. 

V. CONCLUSION 
MI-BCI has become increasingly crucial in many fields, 

especially in rehabilitation. However, there are still a variety of 
problems in decoding MI-EEG, such as low accuracy and 
efficiency. We apply FTBCSP to extract the spatial feature of 
multi-channel EEG. Besides, self-attention is also utilized to 
acquire the channel weight of EEG. Hence, spatial and 
temporal information are fully leveraged in MI-EEG. It is also 
the first time that the FTBCSP features are combined with self-
attention-based CNN. The proposed approach displays 
outstanding classification performance on the publicly 
available datasets. 

However, some limitations such as the massive parameters 
in our model and the limited number of subjects still exist. In 
our future work, we will focus on optimizing the parameters 
and collecting more data to further validate the proposed 
method. 
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